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ABSTRACT

Given an input-output sequence of syntactic
translations of sentences generated by a deter-
ministic finite state grammar G into ZI*, a
method is given for discovering the function which
maps productions of G into I* that gives rise

to the observed transiation.

1. INTRODUCTION

Let G = (VN, VT’ P, S) be a right linear grammar [2]. Thus

all productions in P are of the form
A + aB or A+ a
where A and B are syntactic variables in VN’ and a 1is a

terminal (or word) in VT' We shall assume that G 1is deterministic,

by which we mean that for every pair (A, a) ¢ VN x VT there is

at most one production in P of the above form. We denote the

set of sentences generated by G by L(G).

With G we shall associate what we shall call the wiring
diagram G of G.




Definition. Let G be a right linear grammar. Then the wiring

diagram G of G 1is a directed pseudograph [3] with labelled arcs.
The node set N(G) 1is VNlJ{F}, where F 1is a symbol not in
VNLJVT. The arc set A(G) 1is determined by the productions of

G: if A -+ aB 1is an element of P then A 3+B is a labelled arc

of G; if A+ a 1is an element of P then A 3» F is a labelled
arc of G.

;
For example, if G = 1{5, T, U, V}, {a, b, c}, P, S} where

P={S > aV|bT, T - aT|cU|b, U > bS|a, V - cU|/bU}, then G 1is shown

in Figure 1.

Figure 1.
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There is obviously a natural correspondence between the elements
of L(G) and the set of walks from S to F in G; i.e.,
X X0 X
of G, for some Xys+++sX1 € Vy}. We shall assume throughout
this paper that for each A ¢ VN in G there is a path from S

to F that passes through A.

Definition. Given a deterministic right linear grammar G and a

finite abstract set of symbols ¢ = {¢1,...,¢S}, a syntactic trans-

lation is a map f from A(G) to ¢*.

a . . .
If A — B 1is a labelled arc of G and if the image of this arc
under f is ¢ where ¢ ¢ &*, then graphically we write

al¢

A—— 8
(¢* 1is the set of finite length sequences from ¢, including A,
the empty string).
This definition is basically equivalent to the definition of

a generalized sequential machine (gsm) [1], where f 1is called an

output function.

By extending the definition of f 1in the natural way we have

FX: L(6) » o*
i.e., if we have under f

(1) (n)
ayle \ anlé

S Apsen, AL s

with ¢(1)’.."¢(n) e ¢*, then the sentence

fEX

aja, ... a2y — ¢(1)¢(2) (n)
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In the syntactic translation as shown in Figure 2,
2
ba®b g ¢5¢4¢5¢5¢4¢1

acbaba > ¢3¢1¢3¢1¢2¢3¢1¢3¢1¢1¢2 ’
etc.

alog9,

blo;9,030,

afog9,
cloq0,

blogo 0,0,
ai¢o0,059,

Figure 2.

Let A(G, ®*) be the set of syntactic translations of G, and
let Aex(L(G), ¢*) be the extension of A to (@*)L(G). We shall

refer to elements of A®X(L(G), ¢*) as syntactic maps.
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2. TREE COMPOSITIONS

Definition. Let L be a finite alphabet, and x e T*, A

k-composition of x 1is defined to be an ordered k-tuple ¢ e (I*)

c = (Cl"""ck) having the property that c;c, ... ¢, = x. The
).

1
set of k-compositions of x 1is denoted Ck(x

For example, if £ = {a,b,c}, then C3(ab2c) is the set
{(A,A,abzc). (A,a,bz,c), (A,ab,bc) ...} where A denotes the
empty word. In general, [C (x)] = (":EII) = ("+5'1) if (x| = n.

The notion of composition is extended to trees.

Definition. Let I be a finite alphabet, T a rooted directed

tree T = (N(T), A(T)). Thus T 1s a directed tree with a dis-
tinguished node R & N(T), and for each node N ¢ N(T) there is a
unique directed path from R to N. The leaves of T, denoted
L(T) ¢ N(T) - R are the nodes of T with degree 1. Assume the
elements of L(T) are ordered Lys..vslp, where £ = |L(T)|. For

a given element x = (xl,...,xz) € (2*)L a T-composition of x

is defined by a function
£C
A(T) —— *
having the property that for each leaf Lj of T, and unique path

d1s-00528) € A(T) from R to Lj’

tc(al)tc(az) Cen tc(ak) = X,

Thus a tree composition reduces to a k-composition when the
tree is a rooted path consisting of k <connected arcs. An example
of a tree composition of (ab,ab,b,ba) 1is shown in Figure 3, for
the complete binary tree with 7 nodes. Given T, along with an

L(T)

ordering for the leaves, and x e (I*) we denote the set of

all tree compositions of x by TC(T,x).

k
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(1)

T = > 3 X = (abyab!bsba)
® O

3

’ @
A A
TC(T,x) = ,
ab/ \ab b \Qg) b/

@ @
a b ab A
’ R
. b b A a A A b ba

Figure 3.

An element of TC(T,x) can be represented as a non-negative

integer lattice point in a natural way:

If 215 e aIA(T)l is some ordering of the arcs, then

tf(a) — [t%a)] a e A(T)

|
specifies a lattice point in L = m'A(T)‘, N = non-negative

integers.
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We denote by S{TC(T,x)] the set of lattice points defined

above. A partial order < T is defined in L : for s,t e L

s < Tt iff t 1is obtained from s

by moving objects up the tree.

For example,

[¢] o]
];/\1 < 1/\2 0 1 +0 1 +0 < 0—2——*0-—'0——’0 s &tc
9 A
1 0
3 5

We define, for ST L, max S the elements of S having the pro-

perty that forno te S: s<t, t#s. *

3. THE INDUCTION PROBLEM

It is possible for two distinct syntactic translations to be -
extended to the same syntactic map. Thus we define an equivalence
relation, ~ , on S(G,0o*) by defining fl -~ fz iff fl and f2
are extended to the same element of S®*(L(G),0%).

The induction problem for syntactic translations is this:
an observer 0, who we assume knows the internal structure of the
wiring diagram G except for the syntactic translation, can ob-
serve sentences from L(G) along with their image in ¢* wunder
the unknown syntactic translation. Thus he can observe the syn-
tactic map for a few sentences in L(G). 0 wishes to discover an
element f ¢ S(G,9*) (up to equivalence) such that f&* holds.

We assume (¢ can pick the sentences he wishes to observe. The

theorem that follows shows, essentially, that ¢ «can pick a finite
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number of sentences from L(G) from which syntactic translation

discovery is possible.

THEOREM: The syntactic translation (up to equivalence) can be dis-

covered by observing a finite number of sentences W.

Remark: What the theorem says is that on observing a finite set
W (to be constructed below), ¢ 1is presented with a finite number
of word equations:

%2 v i) T 0

(E) :

*k1%2 "t fki T 0(k)
where |W| = k, a . € A(G) (the arc set of G) and (5) the
observed image in &* <corresponding to the sentence determined by

the walk a in 6. A solution of E (that is, an

i1 o ajfj
assignment of values in ¢* to the arcs A(G) so that E s

satisfied) will solve the induction problem.

Proof: The proof follows the construction of the implicit functions

in [41].

We construct a spanning tree T in G, rooted at S and
connecting all nodes in VN' F is not connected to the spanning
tree. For the example of Figure 1, a spanning tree T 1is indicated
by darkened lines.

Label the arc set A(G) 1in such a way that A(T), the set of

arcs in the spanning tree are ays...5a,.
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From & and A(T) = {al,...,a } we create a new set of sym-

t
bols. In general let X be a finite alphabet {xl,...,xn}. Then

define X° to be the group freely generated by the symbols of X,
with- A the identity element. Form (@ u A(T))o

Begin at F and consider all arcs a entering F. Call this
set A(F), A(F) # ¢. Take an element a in A(F). In what fol-
Tows if a 1is the arc A == F then a(a) = A, w(a) = F. Thus

a(a) e VN and thus there is some walk w = a, ,...,a; a from S

11 13.

¢ A(T). The sentence determined by the

to F with a, ,...,a

i i,

1 J
walk w, call it s, 1is mapped to ¢(s), which 0 observes and 3

writes
a = a;? . a;1¢ e (0UA(T)O)
J 1
This is done for each element of A(F).

0 now considers the arcs of A(G) - (A(T)UA(F)). Let A(j)

the set of arcs a of G not in A(T) such that the number of

arcs in the shortest path (a walk with no repeated nodes) from

w(a) to F is §j (i.e., A(o) = A(F)). Suppose 0 has computed
the equations for the arcs in A(O),...,A(j'l). Let a e A(j) and
let a,bl,...,bj be a shortest path from (a) to F. Now

a(a) e V, hence

a. a ab b.,
i ij 1 J
a walk from S to F, a;, ,...,a; ¢ A(T). If this corresponds
1 J
to sentence s then 0O observes ¢(s), so that
a = a;l e a{l o bil... bil e (UA(T))® by using the equations
j 1

for b .sb from previous computations. This process terminates

1,-- J.
with a list of equations




a; s 2y
2,y S . T spanning tree
a4 ) =<
ay u -2 rF
. as T2 F %
- ag T 2,7 ;
,( ;
- ag U ——=>5 i
}‘ ag Vv ——U E
N Then b
- 2 |
ff 31233 = 9391939201959 i
e i 2 i
i
i - 2
323635 T 95049305050,049,94 1
. 523_7-34 = ¢5¢4¢3¢2¢’4¢2¢1¢5¢4 %
- 2 f
31393, = $3610301926,059, :
) 2 2
- 3133383235 = 9301030105939,05040392949194 -

Ze1 T 9

3 T 9q-k

where 9pse-a0q. are elements of (@L;A(T))o.

For example, from Figure 3 if we define the arcs

These equations can be

method indicated.

solved in the group (2UA(T))®

by the

It follows from [4] that, given (I), the syntactic map is the

same for all assigments of PERRRRLN to elements of ¢°, and
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hence &*, What this means is that, given the finite equations
(1), an assignment of values in &* to the arcs of the spanning

. . *
tree 315058, SO that ak+1,...,aq as defined by (I) are in ¢
will solve the induction problem. 1.

A seguence A1s.00s8y € * such that ak+1,...,aq are in

$* is called a feasible point.

4. THE INDUCTION SOLUTION

The structure of equations (I) will help in solving the word
equations. Instead of the equation a, . =g, in (I) 1let us con-

sider its associated equation r = 1,...,9-k
¢(r) = ail...ai. Qpp g -0 bj
J—
as determined in the proof of Theorem 1. Thus a; ... Ay denotes
1 J

a descent down the spanning tree T, the unknown in (I),

q+r
by ... bj a shortest path from w(ak+r) to F.

From T we shall construct a new tree T' by adding leaves
to T as follows. The new leaves will be Tabelled aj+1,...,aq
and will be directed respectively to the nodes

a(aj+1):---aa(aq)
Thus the spanning tree T of Figure 1 becomes T' 1in Figure 4.
£ i ' x) -k =
If we consider TC(T',x) where x e (%) X (¢(1) ¢(q-k))
is the vector of observed sentences from ¢*, then obviously the set

;y that is
- ’
1° * %k

.,ak. In some examples it

of feasible points a s, are in TC(T',x) a

10"
TC{(T',x) restricted to the arcs PR
turns out that a feasible point can be discovered by computing

max {TC{T',x)], but this is not always the case. Consider Figures §

and s.

e TR AT {0 P~ R 7 1P T
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030103050,0,050,

636,056,005

8301050 18903020304030,6,0,0%

950,4030,0,050,050,

¢5¢4¢3¢2¢5¢2¢4¢1¢§
o4

2
9504930,0,46,9%

Figure 5.

oaafidan oo




max TC(T',x) a

1°32033

Figure 6.

Figure 6 gives max TC(T',x) a feasible point (which

?
a1233023
is easily verified).

Figure 7 gives an example of a case where max TC(T',x) a. eT
i
is not a feasible point.

An obvious necessary condition, in addition to the feasible

points being in TC(T’,x)la e T is
i

l¢(r)| = Iail‘ + ... laij‘ + lakiﬁl + |b1| + ...+ lbjl
Note for the example in Figure 7, if we let Ja;| = x; then i
Xy * ii = 2 i
Xy * Xg t X3 = 3 §~

Xo + X4 + Xg + Xy = 4 . ;

If x,=3 and xp =1, as we have in the max TC(T',x) 7 solution,

ae

then there is no (x3,x4,x5) non-negative solution. ]

T A AW ey A ST g s o SR
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7 L, A A

alé,

5<E>

(a3)

i
b T

T

uw ',‘“ e

— .

: 2
; ¢1¢2 ¢1

max TC(T',x) a e T

Figqure 7.
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As before, we denote the word equation for the variable 1

(3)
Q.. by (3, e AY)

a. P - I a

iy i, k#r "1 °°° bi = %r)

Let us now assume that b1 ... b, (a shortest path from w(ak+r)

to F) is chosen so that it is a suffix of a previously defined
walk.

THEOREM: A sufficient condition for an assignment of arcs a e T
to values in ¢* to be feasible is that it satisfies

max TC(T',¢)
subject to

) Wyl = o)

where w(j) is the walk from S to F corresponding to the var-
iable A +j
Proof: Let a(a), a ¢ A(G), be the "true" unknown syntactic
translation, so for r = 1,..., g-k

Bag ) o $(ai£)$(ak+r)$[b§r)) IO
Let ¢(a) acT De the assignment determined by the criteria stated

in the theorem.

We claim that for each s = 1,..., ¢

¢(ais) fe ¢(ai£) oy oo 8(by)
is a suffix of

Blag ) - $<a1£) 3(agep) +o. 3(by)

If this were not true, then we would have, for some s

¢(a,-1') oo olay )

s-1

being a proper prefix of

RN

o e ot s b o




Lol
—

$ag ) ... dlay )

a8
—

s-1
a and this contradicts maximality.
= Consequently, ¢(b1) cen ¢(bj) is a suffix of ¢(r) (by in-
E 3 3 ] ] 1 t t
Ag duction, b1 ‘o bj is of the form aiS e aiﬂ A 4p b1 cen bj
K for a previously computed walk) ¢(a1 Y ... ¢(ai ) is a prefix
;g of ¢(r) » SO by (*) we have a solution in &* of ¢(ak+r). 0
?ﬂ The example of Figure 7 shows that
3
Y Xog + X = 2
i3 2 3
, X1 + Xg + X3 = 3
x2+x4+x5+x3=4
i3
t.'. -=> (Xl’xz) € {(090)’(091)’(1’0)!(1’1)‘(192)}
i; (xl,xz) = (1,1) corresponds to
{
5

L &d

- ‘-'”"‘.».
- -— . -

] max TC(T',x) aeT

subject to (*)
which is indeed feasible.
It is evident that we may replace TC(T',¢) with a set of
inequalities, i.e., for the example in Figure 7 we must have
Xq £ 3
Xzsl’

for the example in Figure 5

Xq <3
Xo <4
X1 + X3 <5
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